Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956809

RESUMO

CeO2 nanoparticle-loaded MnO2 nanoflowers, prepared by a hydrothermal method followed by an adsorption-calcination technique, were utilized for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The effects of Ce/Mn ratio and thermal calcination temperature on the NH3-SCR activity of the CeO2-MnO2 nanocomposites were studied comprehensively. The as-prepared CeO2-MnO2 catalysts show high NOx reduction efficiency in the temperature range of 150-300 °C, with a complete NOx conversion at 200 °C for the optimal sample. The excellent NH3-SCR performance could be ascribed to high surface area, intimate contact, and strong synergistic interaction between CeO2 nanoparticles and MnO2 nanoflowers of the well-designed composite catalyst. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) characterizations evidence that the SCR reaction on the surface of the CeO2-MnO2 nanocomposites mainly follows the Langmuir-Hinshelwood (L-H) mechanism. Our work provides useful guidance for the development of composite oxide-based low temperature NH3-SCR catalysts.

2.
J Colloid Interface Sci ; 581(Pt A): 350-361, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771744

RESUMO

Adsorption and photocatalytic oxidation are promising technologies for eliminating antibiotics (e.g. tetracycline) in aquatic environments. However, traditional powdery nanomaterials are limited by drawbacks of difficult separation and lack of synergistic function, which do not conform to the practical demand. Herein, we developed a simple one-step gelation-pyrolysis route to fabricate hydrophilic three-dimensional (3D) porous photocatalytic adsorbent, in which CuO nanoparticles are uniformly and firmly embedded in nitrogen-doped (N-doped) porous carbon frameworks. The obtained N-doped carbon/CuO bulky composites exhibited excellent ability to adsorb tetracycline hydrochloride (TC), which was subsequently photo-oxidized under visible light. Their hydrophilic nature favors the adsorption processes toward TC, with a maximum adsorption capacity reaching 25.03 mg∙g-1. In addition, >94.4% of TC molecules could be photo-degraded in 4 h with good cycling efficiency after three consecutive tests. Finally, a reaction scheme for removal process of TC was proposed. The obtained 3D porous N-doped carbon/CuO nanocomposites show great promise for efficient removal of antibiotics in aqueous solution by synergistically utilizing adsorption and photocatalytic oxidation processes.


Assuntos
Nanopartículas , Tetraciclina , Adsorção , Antibacterianos , Carbono , Catálise , Cobre , Nitrogênio , Porosidade , Água
3.
Environ Sci Pollut Res Int ; 27(31): 39186-39197, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638310

RESUMO

Adsorption and photocatalysis are promising strategies to remove pollutants of dyes and antibiotics from wastewater. In this study, we demonstrate a rapid microwave-assisted hydrothermal route for the assembly of 2D copper-porphyrin Metal-Organic Frameworks (Cu-TCPP MOFs) within 1 h. The resulting 2D Cu-TCPP nanosheets with excellent crystallinity and a large surface area (342.72 m2/g) exhibited outstanding adsorption performance for typical dyes with adsorption capacities of about 185 mg/g for rhodamine B, 625 mg/g for methylene blue, and 290 mg/g for Congo red, respectively, as well as for representative antibiotics with adsorption capacities of about 130 mg/g for oxytocin, 150 mg/g for tetracycline, and 50 mg/g for norfloxacin, respectively. Meanwhile, the as-prepared 2D Cu-TCPP showed good photocatalytic degradation activity of pollutants after adsorption under irradiation by visible light, reaching removal efficiencies of 81.2 and 86.3% toward rhodamine B and norfloxacin, respectively. These results demonstrate the promising potential of 2D Cu-TCPP for use in the removal of contaminants from wastewater.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Poluentes Químicos da Água/análise , Antibacterianos , Corantes , Cobre , Micro-Ondas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...